Santé / Sciences

La folle course à l'armement des bactéries contre les antibiotiques

Temps de lecture : 6 min

Comment s'organise la résistance.

Quelques colonies de Streptomyces productrices d'antibiotiques | Pierre Leblond
Quelques colonies de Streptomyces productrices d'antibiotiques | Pierre Leblond

L’apparition de la résistance aux antibiotiques est un phénomène connu depuis l’utilisation de la première de ces substances. La résistance à la pénicilline a suivi de peu sa première utilisation clinique, en 1941. Même scénario pour la méticilline, avec l’émergence de staphylocoques résistants deux ans après sa mise sur le marché, en 1960.

Les Streptomyces, réservoir inépuisable d’antibiotiques

Les antibiotiques sont des molécules qui interagissent avec un composant de la cellule bactérienne et qui bloque un processus vital –intégrité de l’enveloppe cellulaire, synthèse d’éléments essentiels tels que l’ADN ou les protéines...

Résister à un antibiotique peut emprunter différents mécanismes: dégrader l’antibiotique ou le modifier de façon à le rendre inactif, empêcher qu’il ne rentre dans la cellule, le refouler hors de la cellule ou encore modifier sa cible.

Les molécules à activité antibiotique d’origine naturelle appartiennent à des familles chimiques très diverses et sont produites majoritairement par des organismes vivants (bactéries, champignons, plantes). D’autres sont le fruit de la synthèse chimique ou semi-chimique.

Les bactéries qui sont exploitées pour produire une grande partie des antibiotiques, des médicaments anticancéreux et antiviraux appartiennent à un seul genre vivant dans le sol, les Streptomyces. Elles constituent un réservoir inépuisable d’antibiotiques, appartenant à toutes les familles chimiques et visant toutes les cibles cellulaires imaginables aujourd’hui.

Synthétiser un antibiotique sans être capable d’y résister reviendrait cependant à se faire harakiri. Les Streptomyces possèdent donc un arsenal de résistances, c’est-à-dire qu'elles produisent un antidote pour chaque molécule antibiotique qu’elles synthétisent.

De nombreuses stratégies écologiques de survie

Le sol est un milieu particulièrement compétitif. Pauvre en nutriments, il est occupé par une diversité biologique inégalée: 100 millions de cellules par gramme de sol, pas moins d’une centaine d’espèces sur un grain de sol.

Les micro-organismes qui y vivent ont développé de nombreuses stratégies écologiques pour y survivre: compétition active afin d’occuper une niche spécifique, collaboration au sein de communautés complexes, symbiose avec d’autres organismes (champignons et arbres dans les mycorhizes, symbiose avec les fourmis coupe-feuille).

C’est dans ce contexte que se livre une véritable course à l’armement, afin de lutter contre la concurrence, mais également à l’intelligence, afin d’établir des relations productives et équilibrées (collaborations, voire symbiose) au sein de la communauté biologique. Ce sont les mêmes molécules qui, en fonction de leur concentration locale, peuvent jouer ces différents rôles.

Les capacités de synthèse et de résistance aux antibiotiques sont en constante évolution, ce qui est une bonne nouvelle pour notre arsenal antibiotique: cela ouvre la possibilité d’identifier de nouvelles molécules actives et de développer de nouveaux traitements. Le revers de la médaille est celui de l’évolution constante des mécanismes de résistance.

Les mécanismes d'apparition de nouvelles résistances

L’évolution est un mécanisme rapide et continu, qui se déroule à l’échelle du temps humain –et non à l’échelle des temps géologiques.

Chez les bactéries, l’évolution est la combinaison de deux mécanismes majeurs, les mutations ponctuelles, qui affectent une ou plusieurs bases du génome, et, de façon plus prégnante, la recombinaison, c’est-à-dire la réassociation de séquences d’ADN. Celle-ci est le moteur du célèbre «bricolage évolutif» évoqué par François Jacob dans le Jeu des Possibles, en 1981.

Les séquences d’ADN recombinées peuvent être présentes au sein du patrimoine génétique ou bien acquises par transfert. Elles peuvent ainsi provenir d’autres organismes, apparentés ou non, présents dans le même environnement: c’est ce que l'on appelle le transfert horizontal.

L’émergence d’une nouvelle résistance chez un pathogène est caractérisée par trois étapes clés.

  1. La mutation ou recombinaison responsable de l’apparition du gène de résistance chez l’organisme environnemental;

  2. L’acquisition du gène chez un nouvel hôte par transfert. Ce changement d’hôte peut être accompagné d’un changement d’expression du gène de résistance, avec une résistance accrue à l’antibiotique. Il est également possible qu’exposé à de nouvelles molécules dans l’environnement du nouvel hôte, le mécanisme de résistance devienne plus efficace ou soit capable de traiter (transporter ou dégrader) de nouveaux substrats (changement de spécificité);

  3. La sélection sous pression antibiotique en forte concentration chez le pathogène. La présence de l’antibiotique en forte concentration aboutit à la mort des bactéries sensibles et à la sélection et la dissémination des plus résistantes.

Quelquefois, l’apparition de la résistance ne nécessite qu’une seule ou peu de mutations ponctuelles. C’est l’un des scenarii d’apparition de la résistance aux antibiotiques de la famille des macrolides, notamment utilisés contre les infections ORL, avec des mutations ponctuelles modifiant les composants du ribosome (synthèse protéique), cibles de l’antibiotique.

La dissémination au sein des populations bactériennes

Le changement de niveau d’expression d’un gène est également un événement important dans l’acquisition d’une résistance: c’est lui qui confère à des mécanismes d’export, les pompes d'efflux, un potentiel de résistance élevée. Ces pompes situées dans la membrane cellulaire sont capables de refouler l’antibiotique à l’extérieur de la cellule.

Une mutation ou un transfert chez un autre hôte peut augmenter leur niveau d'expression et leur résistance et ainsi conférer, sous pression antibiotique, un fort avantage adaptatif. Lorsque l’on sait que certaines pompes d'efflux confère la résistance à plusieurs classes d’antibiotiques, on mesure le potentiel de ces mécanismes évolutifs.

Le transfert assure l’acquisition de gènes «prêts à l’emploi» qui peuvent être utilisés tels quels par le nouvel hôte ou bien réarrangés, comme pour l’apparition récente d’un gène de résistance à tous les antibiotiques de la famille des beta-lactames chez les germes responsables de dysenteries graves, où le réarrangement de deux gènes de résistance associé à un niveau d’expression accru a favorisé l’apparition d’un mécanisme nouveau.

Ce gène, blaNDM-1, est très souvent retrouvé sur des éléments mobiles qui peuvent se transférer et assurer la dissémination au sein des populations bactériennes. Le mécanisme a été découvert pour la première fois au Japon dans les années 1950, lors d’une épidémie de dysenterie dont le germe, les shigelles, était résistant à plusieurs antibiotiques simultanément.

Une lutte sous nos pieds

Dans les sols, la concentration de molécules à effet antibiotique n’est probablement effective qu’à l’immédiate proximité du producteur. La concentration est partout ailleurs trop faible pour assurer un effet létal –de dix à cent fois inférieure à la concentration nécessaire.

Ces faibles concentrations d’antibiotiques peuvent également résulter de la contamination de l’environnement suite à l’utilisation massive d’antibiotiques par les humains, en agriculture ou en médecine.

Elles ont des conséquences multiples favorisant l’émergence de nouvelles résistances à de faibles doses. Ces «proto-résistances» pourront ensuite être sélectionnées en présence de fortes concentrations.

Les faibles concentrations antibiotiques constituent un stress connu pour induire une réponse cellulaire, appelée SOS, destinée à réparer les dommages induits à l’ADN. Lors de cette réponse, la synthèse d’ADN nécessaire à la multiplication cellulaire devient incorrecte et produit des mutations à haute fréquence.

Le stress induit également la mobilité d’éléments génétiques qui sont capables de mobiliser des gènes d’une bactérie à l’autre. Ce phénomène va favoriser la dissémination à grande échelle des gènes de résistance aux bactéries avoisinantes.

Naturelle ou d’origine humaine, la présence d’antibiotique dans l’environnement est génératrice de gènes de résistance. Outre étendre notre arsenal antibiotique pour traiter les infections bactériennes en pathologies humaines et vétérinaires, un autre niveau d’action est de tenter de limiter la diffusion des résistances en agissant sur le mécanisme de transfert de gènes. C’est sur cette dernière option qu’une équipe du Laboratoire dynamique des génomes et adaptation microbienne développe ses recherches.

La version originale de cet article a été publiée sur The Conversation.

The Conversation

Pierre Leblond Chercheur au Laboratoire dynamique des génomes et adaptation microbienne

Newsletters

Vous pratiquez certainement le «bronzage habillé» sans le savoir

Vous pratiquez certainement le «bronzage habillé» sans le savoir

L'absence de sable et d'eau salée ne protège pas des UV.

Une seule cuite pourrait nuire à votre sommeil

Une seule cuite pourrait nuire à votre sommeil

Le binge-dringing peut modifier vos gênes.

Le yoga ouvre les chakras mais aussi l'ego

Le yoga ouvre les chakras mais aussi l'ego

On s'est un peu éloigné des principes de base...

Newsletters